Methylsulfonylmethane Inhibits RANKL-Induced Osteoclastogenesis in BMMs by Suppressing NF-κB and STAT3 Activities

نویسندگان

  • Youn Hee Joung
  • Pramod Darvin
  • Dong Young Kang
  • Nipin SP
  • Hyo Joo Byun
  • Chi-Ho Lee
  • Hak Kyo Lee
  • Young Mok Yang
چکیده

Osteoclast differentiation is dependent on the activities of receptor activator NF-kB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Given that RANKL plays a critical role in osteoclast formation and bone resorption, any new compounds found to alter its activity would be predicted to have therapeutic potential for disorders associated with bone loss. Methylsulfonylmethane (MSM) is a naturally occurring sulfur compound with well-documented anti-oxidant and anti-inflammatory properties; currently its effects on osteoclast differentiation are unknown. We sought to investigate whether MSM could regulate osteoclastogenesis, and if so, its mechanism of action. In this study, we investigated the effects of MSM on RANKL-induced osteoclast differentiation, together with STAT3's involvement in the expression of osteoclastic gene markers. These experiments were conducted using bone marrow derived macrophages (BMMs) and cell line material, together with analyses that interrogated both protein and mRNA levels, as well as signaling pathway activity. Although MSM was not toxic to osteoclast precursors, MSM markedly inhibited RANKL-induced TRAP activity, multinucleated osteoclast formation, and bone resorptive activity. Additionally, the expression of several osteoclastogenesis-related marker genes, including TRAF6, c-Fos, NFATc1, cathepsin K, and OSCAR were suppressed by MSM. MSM mediated suppression of RANKL-induced osteoclastogenesis involved inhibition of ITAM signaling effectors such as PLCγ and Syk, with a blockade of NF-kB rather than MAPK activity. Furthermore, MSM inhibited RANKL-induced phosphorylation of STAT3 Ser727. Knockdown of STAT3 using shRNAs resulted in reduced RANKL-mediated phosphorylation of Ser727 STAT3, and TRAF6 in cells for which depletion of STAT3 was confirmed. Additionally, the expression of RANKL-induced osteoclastogenic marker genes were significantly decreased by MSM and STAT3 knockdown. Taken together, these results indicate that STAT3 plays a pivotal role in RANKL-induced osteoclast formation, and that MSM can attenuate RANKL-induced osteoclastogenesis by blocking both NF-kB and STAT3 activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erratum to: Sophorae Flos extract inhibits RANKL-induced osteoclast differentiation by suppressing the NF-κB/NFATc1 pathway in mouse bone marrow cells

BACKGROUND Sophorae Flos (SF) is a composite of flowers and buds of Styphnolobium japonicum (L.) Schott and has been used in traditional Korean and Chinese medicine for the treatment of hemostasis and inflammation. Previous studies reported that SF possesses anti-obesity properties, as well as anti-allergic, anti-proliferative, and anti-inflammatory activities. However, the effect of SF in bone...

متن کامل

Agelasine D Suppresses RANKL-Induced Osteoclastogenesis via Down-Regulation of c-Fos, NFATc1 and NF-κB

In the present study, we investigated the effect of agelasine D (AD) on osteoclastogenesis. Treatment of bone marrow macrophages (BMMs) with receptor activator of nuclear factor κB ligand (RANKL) resulted in a differentiation of BMMs into osteoclasts as evidenced by generation of tartrate-resistant acid phosphatase (TRAP)-positive, multinucleated cells and formation of pits in calcium phosphate...

متن کامل

α-Linolenic Acid Inhibits Receptor Activator of NF-κB Ligand Induced (RANKL-Induced) Osteoclastogenesis and Prevents Inflammatory Bone Loss via Downregulation of Nuclear Factor-KappaB-Inducible Nitric Oxide Synthases (NF-κB-iNOS) Signaling Pathways

BACKGROUND Inflammation is a major cellular strain causing increased risk of osteo-degenerative diseases. Omega-3 fatty acids have been great source in suppressing inflammation. We investigated the effect of α-linolenic acid (ALA) on RANKL-stimulated osteoclast differentiation, LPS-induced and ovariectomized bone loss in mice models. MATERIAL AND METHODS The bone marrow macrophages (BMMs) were ...

متن کامل

Aspirin inhibits osteoclastogenesis by suppressing the activation of NF-κB and MAPKs in RANKL-induced RAW264.7 cells

Aspirin is a commonly used medicine as an effective antipyretic, analgesic and anti-inflammatory drug. Previous studies have demonstrated its potential effects of anti-postmenopausal osteoporosis, while the molecular mechanisms remain unclear. The effects of aspirin on receptor‑activator of nuclear factor κB (NF‑κB) ligand (RANKL)‑induced osteoclasts were investigated in RAW264.7 cells in the c...

متن کامل

Calycosin Suppresses RANKL-Mediated Osteoclastogenesis through Inhibition of MAPKs and NF-κB

Calycosin, an isoflavonoid phytoestrogen, isolated from Radix Astragali, was reported to possess anti-tumor, anti-inflammation, and osteogenic properties, but its impact on osteoclast differentiation remains unclear. In this study, we examined the effects of calycosin on osteoclastogenesis induced by RANKL. The results showed that calycosin significantly inhibited RANKL-induced osteoclast forma...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016